Step of Proof: can-apply-mu'
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
can-apply-mu'
:
A
:Type,
P
:(
A
),
d
:(
x
:
A
. Dec(
n
:
. (
(
P
(
x
,
n
))))),
x
:
A
.
(
can-apply(mu'(
P
);
x
))
(
n
:
. (
(
P
(
x
,
n
))))
latex
by (UnivCD THENA Auto)
CollapseTHEN ((RepUR ``mu\' can-apply`` ( 0)
)
CollapseTHEN ((Subst'
C
TERMOF{
p-mu-decider
:ObjectId, 1:l, 1:l} ~ TERMOF{
p-mu-decider
:ObjectId, 1:l, i:l} ( 0)
)
THENL [
T
(RW (SubC (ComputeToC []) ) 0)
CollapseTHEN (Trivial)
; Id]
)
)
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
P
:
A
C1:
3.
d
:
x
:
A
. Dec(
n
:
. (
(
P
(
x
,
n
))))
C1:
4.
x
:
A
C1:
(
isl((TERMOF{
p-mu-decider
:ObjectId, 1:l, i:l}(
A
,
P
,
d
,
x
)).1))
(
n
:
. (
(
P
(
x
,
n
))))
C
.
Definitions
s
~
t
,
p-mu-decider
,
Dec(
P
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
x
:
A
.
B
(
x
)
,
f
(
a
)
,
x
:
A
B
(
x
)
,
,
,
t
T
,
Type
,
mu'(
P
)
,
can-apply(
f
;
x
)
,
b
Lemmas
decidable
wf
,
assert
wf
,
nat
wf
,
bool
wf
origin